Giant edge state splitting at atomically precise graphene zigzag edges

نویسندگان

  • Shiyong Wang
  • Leopold Talirz
  • Carlo A Pignedoli
  • Xinliang Feng
  • Klaus Müllen
  • Roman Fasel
  • Pascal Ruffieux
چکیده

Zigzag edges of graphene nanostructures host localized electronic states that are predicted to be spin-polarized. However, these edge states are highly susceptible to edge roughness and interaction with a supporting substrate, complicating the study of their intrinsic electronic and magnetic structure. Here, we focus on atomically precise graphene nanoribbons whose two short zigzag edges host exactly one localized electron each. Using the tip of a scanning tunnelling microscope, the graphene nanoribbons are transferred from the metallic growth substrate onto insulating islands of NaCl in order to decouple their electronic structure from the metal. The absence of charge transfer and hybridization with the substrate is confirmed by scanning tunnelling spectroscopy, which reveals a pair of occupied/unoccupied edge states. Their large energy splitting of 1.9 eV is in accordance with ab initio many-body perturbation theory calculations and reflects the dominant role of electron-electron interactions in these localized states.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sublattice localized electronic states in atomically resolved graphene-Pt(111) edge-boundaries.

Understanding the connection of graphene with metal surfaces is a necessary step for developing atomically precise graphene-based technology. Combining high-resolution STM experiments and DFT calculations, we have unambiguously unveiled the atomic structure of the boundary between a graphene zigzag edge and a Pt(111) step. The graphene edges minimize their strain by inducing a 3-fold edge-recon...

متن کامل

Localized Edge Vibrations And Edge Reconstruction By Joule Heating In Graphene Nanoflakes

Vibrations are often treated by very simple methods compared to electrons, but the precise atomic configuration becomes important for the stability of conductors when their size approaches nanometer scales. Graphene flakes are an example of a system, where atomically precise calculations are needed. Control of the edge topology of graphene nanostructures is critical to graphene-based electronic...

متن کامل

Atomically perfect torn graphene edges and their reversible reconstruction.

The atomic structure of graphene edges is critical in determining the electrical, magnetic and chemical properties of truncated graphene structures, notably nanoribbons. Unfortunately, graphene edges are typically far from ideal and suffer from atomic-scale defects, structural distortion and unintended chemical functionalization, leading to unpredictable properties. Here we report that graphene...

متن کامل

Direct imaging of graphene edges: atomic structure and electronic scattering.

We report an atomically resolved scanning tunneling microscopy investigation of the edges of graphene grains synthesized on Cu foils by chemical vapor deposition. Most of the edges are macroscopically parallel to the zigzag directions of graphene lattice. These edges have microscopic roughness that is found to also follow zigzag directions at atomic scale, displaying many ∼120° turns. A promine...

متن کامل

Author's personal copy In situ observations of the nucleation and growth of atomically sharp graphene bilayer edges

Using in situ transmission electron microscopy, we observed the nucleation and growth of graphene bilayer edges (BLE) with ‘‘fractional nanotube’’-like structure from the reaction of graphene monolayer edges (MLEs). Most BLEs showed atomically sharp zigzag or armchair crystallographic facets in contrast to the atomically rough MLEs with irregular shapes, suggesting that the BLEs are much more s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016